- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bortnik, Jacob (2)
-
Hartley, David_P (2)
-
Chu, Xiangning (1)
-
Hua, Man (1)
-
Huang, Sheng (1)
-
Jaynes, Allison_N (1)
-
Li, Wen (1)
-
Ma, Donglai (1)
-
Ma, Qianli (1)
-
Malaspina, David (1)
-
Meredith, Nigel_P (1)
-
Shen, Xiao‐Chen (1)
-
Troyer, Riley_N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Energetic electron precipitation (EEP) associated with pulsating aurora can transfer greater than 30 keV electrons from the outer radiation belt region into the upper atmosphere and can deplete atmospheric ozone via collisions that produce NOx and HOx molecules. Our knowledge of exactly how EEP occurs is incomplete. Previous studies have shown that pitch angle scattering between electrons and lower‐band chorus waves can cause pulsating aurora associated with EEP and that substorms play an important role. In this work, we quantify the timescale of chorus wave decay following substorms and compare that to previously determined timescales. We find that the chorus decay e‐folding time varies based on magnetic local time (MLT), magnetic latitude, and wave frequency. The shortest timescales occur for lower‐band chorus in the 21 to 9 MLT region and compares, within uncertainty, to the energetic pulsating aurora timescale of Troyer et al. (2022,https://doi.org/10.3389/fspas.2022.1032552) for energetic pulsating aurora. We are able to further support this connection by modeling our findings in a quasi‐linear diffusion simulation. These results provide observations of how chorus waves behave after substorms and add additional statistical evidence linking energetic pulsating aurora to substorm driven lower‐band chorus waves.more » « less
-
Chu, Xiangning; Bortnik, Jacob; Shen, Xiao‐Chen; Ma, Qianli; Li, Wen; Ma, Donglai; Malaspina, David; Huang, Sheng; Hartley, David_P (, Journal of Geophysical Research: Space Physics)Abstract Whistler‐mode hiss waves are crucial to the dynamics of Earth's radiation belts, particularly in the scattering and loss of energetic electrons and forming the slot region between the inner and outer belts. The generation of hiss waves involves multiple potential mechanisms, which are under active research. Understanding the role of hiss waves in radiation belt dynamics and their generation mechanisms requires analyzing their temporal and spatial evolutions, especially for strong hiss waves. Therefore, we developed an Imbalanced Regressive Neural Network (IR‐NN) model for predicting hiss amplitudes. This model addresses the challenge posed by the data imbalance of the hiss data set, which consists of predominantly quiet‐time background samples and fewer but significant active‐time intense hiss samples. Notably, the IR‐NN hiss model excels in predicting strong hiss waves (>100pT). We investigate the temporal and spatial evolution of hiss wave during a geomagnetic storm on 24–27 October 2017. We show that hiss waves occur within the nominal plasmapause, and follow its dynamically evolving shape. They exhibit intensifications with 1 and 2 hr timescale similar to substorms but with a noticeable time delay. The intensifications begin near dawn and progress toward noon and afternoon. During the storm recovery phase, hiss intensifications may occur in the plume. Additionally, we observe no significant latitudinal dependence of the hiss waves within |MLAT| < 20°. In addition to describing the spatiotemporal evolution of hiss waves, this study highlights the importance of imbalanced regressive methods, given the prevalence of imbalanced data sets in space physics and other real‐world applications.more » « less
An official website of the United States government
